欢迎来到专业的优谦范文网平台! 工作总结 工作计划 心得体会 述职报告 思想汇报 事迹材料 疫情防控 共同富裕
当前位置:首页 > 范文大全 > 公文范文 > 正文

磁控溅射技术在纺织领域的应用研究进展

时间:2023-09-18 14:40:06 来源:网友投稿

乔阳阳 刘明雪 刘琼溪 周岚 邵建中

摘要:磁控溅射技术作为一种生态环保的薄膜沉积技术,在纺织领域得到广泛的关注。本文综述了磁控溅射技术在纺织品功能化、纺织品仿生结构生色以及膜-基结合稳定性方面的研究进展,概述了磁控溅射技术在纺织基材上的沉积原理和特点,靶材分类及常见靶材的应用特点,并指出磁控溅射技术目前存在的不足及相应的改善策略。该技术的应用有利于纺织染整业的可持续发展。

关键词:磁控溅射;
纺织品;
功能整理;
结构生色;
薄膜干涉;
结合牢度

中图分类号:TS195.5

文献标志码:A

文章编号:1009-265X(2023)02-0204-14

磁控溅射技术是指利用高能粒子轰击固体阴极靶材,阴极靶表面的原子被激发出来,并沉积在基材表面形成薄膜的技术[1]。1852年,Grove首次发现了溅射这一现象,因沉积率低等问题未得到广泛应用[2];
1974年,Chapin[3]发明了平衡磁控溅射,实现了高速低温溅射,自此磁控溅射技术得到了发展,但平衡磁控溅射因离子轰击不足以改变薄膜结构,难以得到高质量薄膜,并且薄膜与基材结合牢度差;
1985年,Window等[4]和Savvides等[5]提出了非平衡磁控溅射,调整了磁场分布,使得薄膜与基材牢度得到了提高。1996年,提出了中频交流磁控溅射技术,提高了磁控溅射技术的稳定性以及靶材利用率,为磁控溅射薄膜工业化生产提供了有利条件[6]。随着磁控溅射技术的迅速发展,该技术作为一种常用的有效手段应用到诸多产品的制备中,在新材料及纺织领域受到了广泛关注。

薄膜的制备方法通常分为干式镀膜和湿式镀膜两种。干式镀膜包括化学气相沉积(CVD)和物理气相沉积(PVD),物理气相沉积又包括真空蒸镀、离子镀膜及溅射镀膜等。溅射镀膜最常用的方法有二极溅射、三极(或四极)溅射及磁控溅射等。通过化学气相沉积法制备的薄膜较为稳定致密,但原料的化学性质不稳定,如CH4、H2等,镀膜过程中易产生有毒物质,如CO、Cl2等,且成本较高不适合工业化生产。物理气相沉积中真空蒸镀膜法简单、高效,易获得纯度较高的薄膜,但薄膜的厚度不易控制,且制备过程中也会产生有毒物质。离子镀膜法可通过改变工艺参数调控薄膜厚度,相较于前者可获得更为均匀致密、厚度可控的膜层,并且由于高能粒子的轰击、注入,使得膜层致密,与基材结合牢度较好,但成本较高,镀膜时基材温度高,不适合镀覆纺织品。溅射镀膜中二极溅射方法简单,但放电不稳定、沉积速率低;
三极溅射相对于二极溅射,溅射速率及膜层质量得到提高,但也存在放电不稳定的问题,容易导致薄膜厚度不均匀[7-11]。磁控溅射技术与上述镀膜技术相比,主要有以下几个显著特征[12-14]:a)沉积速率高、基材升温低、对膜层的损伤小;
b)靶材的使用范围更广;
c)薄膜与基材结合牢度较好;
d)薄膜纯度高、致密性好,且成膜较为均匀;
e)重演性好,具有在基材上大面积工业化镀膜的潜能;
f)能通过工艺参数精确控制,从而获得目标厚度的薄膜;
g)生态节水,环境友好。

磁控溅射技术作为一种“干法”镀膜技术,在织物表面镀覆功能性薄膜,可以制备各种功能性纺织品,如抗菌型纺织品、抗紫外线型纺织品等,成为“干法”整理的重要途径;
另一方面,也可通过薄膜干涉结构生色原理,对织物进行“干法”着色,制备仿生结构生色纺织品。

传统染整行业是典型的高碳行业,存在耗水耗能大,废水处理负担重等问题。磁控溅射作为一种“干法”处理技术,环境友好,符合“双碳”目标的需求。本文将综述介绍磁控溅射技术在功能性纺织品开发、仿生结构生色纺织品制备及膜-基稳定性方面的应用研究进展。

1磁控溅射镀膜的基本原理

目前大多数人所接受的磁控溅射镀膜机理是Sigmund[15]提出的级联碰撞理论。电子在外加电场E的作用下,加速向外飞出,飞向基材的过程中与Ar原子碰撞,使Ar原子电离成Ar+和二次电子,并且把大部分的能量传递给Ar+,Ar+获得能量后在电场的作用下高速轰击靶材,将部分能量传递给靶材表面的晶格原子,引起靶材原子的运动。其中具有克服表面势能能量的原子可以直接脱离靶材溅射出去;
有的原子获得的能量较低不能脱离晶格的束缚,只能在原位震动并波及周围原子,使靶材温度升高;
还有的原子获得了足够多的能量发生了一次反冲,使其临近原子受到碰撞发生移动,继续反冲下去,这一过程成为级联碰撞。级联碰撞后部分原子克服表面势能脱离靶材,形成级联溅射,沉积在基材表面形成薄膜[16]。此外,二次电子在电场和磁场的共同作用下被束缚在靶材表面特定范围内做摆线运动,不断与Ar原子发生碰撞,使这个特定范围内气体分子的离化率增加,轰击靶材的高能粒子数量增多,从而实现高速低温的溅射特点[17-19]。磁控溅射原理图如图1所示。

磁控溅射技术可以控制溅射工艺(溅射功率、溅射时间和溅射压强等)和不同靶材等,在纺织基材表面沉积金属或非金属薄膜。其中溅射靶材的可选范围较为广泛,例如Cu、Ti、Ag、Al、Pt等金属靶材;
Si、石墨等非金属靶材;
TiO2、Fe2O3、ZnO等金属氧化物靶材;
SiO2等非金属氧化物靶材;
还可以沉积镍铬合金、钛铝合金等合金靶材和聚四氟乙烯等聚合物靶材[20-25]。

2磁控溅射技术在功能性纺织品制备中的应用

功能整理的方法有物理整理、化学整理和生物生态整理等,但这些方法一般都会存在织物手感变化或技术要求高、难度大、有污染等问题。磁控溅射技术主要是通过在织物表面沉积薄膜,实现织物的表面改性,操作较简单,不仅能够赋予纺织品各种功能,还能基本保持织物原有的风格。

2.1防水透湿性能

磁控溅射制备防水透湿织物是在织物表面沉积一层低表面能的薄膜,可以使织物孔隙减小到一定程度,但不致所有孔隙封闭,从而使织物具有良好的防水透湿性和一定的透气性[26]。

聚四氟乙烯是由氟和碳组成的高分子化合物,不含亲水性基团,具有很强的疏水性。于磊等[27]将静电纺丝技术和磁控溅射技术相结合,先利用静电纺丝技术制备聚氨酯(PU)纳米纤维膜,再利用磁控溅射技术在PU膜上镀覆聚四氟乙烯(PTFE)薄膜獲得防水性能。PU纤维膜最初接触角为121.1°,静置后水几乎完全渗入;
镀膜后最初接触角为128.6°,静置5 min后接触角变化不大;
透湿性与原样相差不大。Huang等[25]以聚四氟乙烯为靶材,在聚酯(PET)织物上镀覆氟碳薄膜。当溅射时间为60 min时,织物的防水性能较好,透湿性变化不大。王东等[28]利用磁控溅射技术在聚酯织物表面镀覆聚四氟乙烯薄膜。镀膜织物防水性能显著提高,从完全渗入到接触角提高至138.8°,透湿量稍有下降,但变化不大。Huang等[29]利用磁控溅射技术在丝织物上镀覆聚四氟乙烯薄膜,织物表面粗糙度得到提高,接触角从68°增加到138°,防水性能提高。但聚四氟乙烯靶材制备工艺复杂、价格昂贵,所以它的广泛应用受到限制。

在织物上沉积金属薄膜也可以得到良好的防水透湿性能,并且金属靶材比聚四氟乙烯靶材的制备简单。Jiang等[30]在涤纶织物表面镀覆了掺杂铝的氧化锌(AZO)薄膜,溅射时间为30、60 min和90 min 时,镀膜织物的接触角分别为140°、142°和146°,溅射时间越长,织物表面越粗糙,织物的防水性能越好。Miao等[31]利用磁控溅射技术在聚酯(PET)织物上制备了AZO/Ag/AZO和AZO/Cu/AZO多层膜。未镀膜涤纶织物接触角为50°;
AZO/Ag/AZO镀膜织物的接触角随Ag膜厚度不同有所差别,分别为92.51°(Ag 15 nm)和93.51°(Ag 20 nm);
AZO/Cu/AZO镀膜织物的接触角分别为88°(Cu 15 nm)和88.51°(Cu 20 nm),镀膜前后样品CA图像如图2所示,金属层不同对防水性能也有一定的影响,但比未镀膜织物防水性能得到显著提高。Lee等[32]利用磁控溅射技术在化学回收涤纶(CR-PET)织物上镀覆Al膜,随着沉积膜层变厚,织物接触角增大,防水性能显著提高。涤纶织物和Al膜都具有高度疏水性;
此外,CR-PET织物是由纱线组成的,纤维之间有许多孔洞,但溅射处理后,纤维间的孔洞被纳米粒子填充,使织物防水性能增强。以上方法虽然都得到了较好的防水透湿性能,但薄膜与基材结合牢度较差,防水透湿性能会随着薄膜发生脱落而消失,有待开发出耐久性的防水透湿织物。

2.2抗菌性能

磁控溅射技术制备抗菌织物是利用溅射到织物上的金属纳米粒子破坏细菌的细胞壁、蛋白质或酶等达到抗菌效果,相比于传统抗菌剂的抗菌活性更高、抑菌持久性更好[33-34]。

磁控溅射制备抗菌织物常使用的靶材是银和铜,银的抗菌活性大于铜,抗菌率可达到99%左右,但由于银价格较昂贵,不断积累对身体也有一定的危害性,所以铜使用较多。Irfan等[35]采用射频磁控溅射技术在棉织物上制备了不同厚度Ag/SiO2复合薄膜。镀膜织物相比于原织物对金黄色葡萄球菌、大肠杆菌和白色念珠菌的抑菌性能得到了一定程度的提高,出现了明显的抑菌圈。其中镀膜前后对白色念珠菌抗菌效果如图3所示。Scholz等[22]采用磁控溅射技术对由SiO2纤维组成的织物进行磁控溅射薄膜的镀覆,对银、铜、铂、铂/铑和金膜的抗菌效果进行测试。镀覆铜膜和银膜的织物对抵抗金黄色葡萄球菌最有效,镀银和镀铜织物周围出现3 mm的抑菌带;
铂/铑仅对一种真菌有效,其余金属膜层未显示出抗菌效果。

高秋瑾等[36]利用磁控溅射技术在蚕丝织物表面镀覆Ag膜,薄膜厚度为1 nm时,镀膜织物对金黄色葡萄球菌抑菌率高达99.89%;
继续提高薄膜厚度为5 nm时,反而导致抗菌性能下降,可能是由于银粒子活性降低或纳米粒子出现团聚。Rani等[37]在涤纶真丝混纺织物上镀覆Cu膜,沉积膜层越厚,对大肠杆菌以及金黄色葡萄球菌的抑菌圈越大,抗菌效果效果越好。利用TiO2的光催化性能及抗菌性能还可以制备光催化型抗菌织物,但TiO2的抗菌活性不如Ag和Cu。例如,Huang等[23]利用磁控溅射技术在聚丙烯非织造布表面镀覆TiO2膜,镀膜织物抑菌率为26.2%。以上虽然镀膜织物抗菌率很高,但由于薄膜和基材结合力较弱,经多次水洗或摩擦等机械力作用会导致薄膜脱落,抗菌持久性及循环使用性较差,所以膜-基结合牢度需要进一步研究。

由于新冠疫情的影响,口罩成为人们生活极其重要的一部分,磁控溅射镀膜织物凭借其优异的抗菌性能被用来制备口罩等防护用品。He等[38]利用磁控溅射技术将Ag膜和Zn膜分别沉积在棉织物两面制备抗菌层,夹在无纺布之间制备抗菌口罩,显现出较高的抑菌性能,并且纳米颗粒的稳定性良好,可重复利用。惠州市杰佰净化有限公司和广东硕源科技股份有限公司利用磁控溅射技术合作研发了一款防尘除菌、可反复利用的抗菌口罩,相较于现有的磁控溅射纳米膜口罩,该口罩不仅有较高的抗菌率,可以防止吸入灰尘,而且提高了口罩的利用率[39]。利用磁控溅射技术还可以用于制备防护服、工作服等,在医用方面具有较好的发展前景。

2.3抗紫外线性能

磁控溅射镀覆的薄膜粒子尺寸极小、比表面积大,由于其特有的量子尺寸效应,导致紫外线吸收量显著提高;
还有一部分紫外线被纳米薄膜反射,随着薄膜厚度的增加,紫外线反射率提高、透过率降低,抗紫外线性能提高。相比于传统制备方法,磁控溅射技术不影响织物手感,并且具有生态环保的特点[40-41]。

利用磁控溅射技术在织物表面沉积Ag、Cu、TiO2、ZnO等都可以达到良好的抗紫外性能,镀Ag膜织物最优的紫外线透过率可达到0。李超荣等[42]采用直流磁控溅射方法在醋酯纤维(CA)表面沉积Ag膜。随着溅射功率的增加,紫外线透过率从52.75%降到0,抗紫外性能提高。Jiang等[43]利用磁控溅射技术在聚酯纤维表面镀覆Ag膜。未处理聚酯织物UPF值为89.21;
当溅射时间为10、30 min时,织物的UPF值分别为108.18、302.15;
溅射时间增加,增强了织物对紫外线的反射作用。镀膜前后织物的抗紫外性能如图4所示。Kudzin等[44]利用磁控溅射技术在聚乳酸纤维上沉积Cu膜。原织物、溅射10 min和30 min所对应的UPF值分别为9.36、44.83、49.32,与原织物相比,抗紫外性能显著提高。

在织物表面沉积复合膜织物相比于沉积单层膜,抗紫外性能更加优越。例如,Jin等[24]在利用磁控溅射技术制备的ZnO薄膜上,通过离子溅射和热处理,制备了不同溅射时间的Au纳米颗粒。与未添加Au纳米颗粒的ZnO相比,Au/ZnO纳米复合材料的紫外吸收增强,这主要是因为ZnO的能带间激发和Au纳米颗粒的局域表面等离子体共振。Yuan等[45]采用直流磁控溅射和射频磁控反应溅射技术,在涤纶织物上沉积了Ag/TiO2复合薄膜、TiO2单层膜和Ag單层膜。原织物的UPF值为9.62,其次是镀覆了TiO2膜的织物UPF值为14.68,镀覆Ag膜织物UPF值为23.01,镀覆Ag/TiO2复合膜的织物的UPF值在30左右。孟灵灵等[46]利用磁控溅射技术在涤纶非织造布、机织布、针织布上镀覆Ag/ZnO复合膜。其中非织造布孔径最小,纳米薄膜可以使紫外光发生散射,紫外线透过率低,抗紫外性能较好;
相反,针织布孔径较大,紫外线透过率较高,不同镀膜涤纶织物紫外透射率曲线如图5所示;
纺织品自身结构对功能性有一定的影响。无论沉积单层膜还是多层膜,织物的抗紫外性能都得到了显著提高,但膜-基结合力较弱,薄膜易脱落,导致抗紫外性能下降,因而需要提高膜-基结合牢度,得到长效持久的抗紫外织物。

2.4抗静电性能

磁控溅射抗静电技术是在织物表面沉积一层具有导电性能的薄膜,能阻止静电在织物表面存留,并将静电快速传导出去,从而达到良好的抗静电效果。相较于常规抗静电方法,操作简单,属于物理加工方法,不产生污染,并且耐久性好[47]。

在制备抗静电织物时需要选择导电性强的金属,所以常用Ag靶和Cu靶,前文提到Ag的导电性大于Cu,理论上最优半衰期可以达到0 s,但由于Ag价格昂贵,所以使用Cu靶的较多。彭灵慧等[48]采用磁控溅射技术在芳纶织物表面沉积Cu膜。芳纶原织物半衰期为42.7 s;
镀覆Cu膜后,当溅射时间为50 min时,织物的半衰期降低至0.4 s。袁小红等[49]利用磁控溅射技术在涤纶织物上镀覆Ag膜和Cu膜半衰期值越小,电荷逸散得越快,抗静电效果越好。对于镀覆Cu膜织物来说,半衰期能降低至0.7 s;
对于镀覆Ag膜织物来说,半衰期能降低至0 s。张建英等[50]探究了涤纶经磁控溅射镀覆Cu膜,镀覆双面金属薄膜的织物相比于单面镀膜织物抗静电能力能强。在织物表面沉积复合膜也可以得到良好的抗静电性,例如,Chu等[51]利用磁控溅射技术在聚丙烯织物表面镀覆Cu/Ag复合膜,抗静电性能得到了显著提高。吴家斌[52]利用磁控溅射技术在丙纶非织造布表面沉积ZnO/Cu复合膜,半衰期从11.0 s降低至0.1 s。但以上镀膜织物的膜-基结合力较弱,容易导致抗静电织物耐久性降低,所以膜-基结合力需要提高。Wang等[53]对聚丙烯腈纤维先用(3-氨基丙基)三乙氧基硅烷(APTES)和3-巯基丙基三乙氧基硅烷(MPTES)进行前处理改性,然后利用磁控溅射技术在纤维表面镀覆Ag膜。镀膜织物抗静电性能相比原织物显著提高,且经30次洗涤后,织物抗静电性能仍良好;
改性纤维产生的硫醇基团与银离子形成化学键,提高了薄膜与纤维的结合力,从而提高了抗静电织物的耐久性。但经过该偶联剂处理后,织物的手感会变硬,所以制备手感好、结合力强的抗静电织物还有待研究。

2.5电磁屏蔽性能

磁控溅射电磁屏蔽技术是一种物理整理方法,电磁波传播到镀膜织物表面时,在屏蔽材料中的衰减主要包括表面反射、吸收和多次反射3种形式。磁控溅射技术制备电磁屏蔽纺织品具有工艺简单、膜层致密均匀、生态环保等优点[54]。

利用磁控溅射技术制备电磁屏蔽织物,也需要使用导电性较好的金属,如Ag、Cu等,镀膜织物的电磁屏蔽性能都能得到显著提高。李强林等[55]通过磁控溅射技术在涤纶织物上镀覆单面铜钛膜和双面铜钛膜,双面镀膜织物的屏蔽效能值高达41 dB,单层镀膜织物屏蔽效能值高达21 dB。储长流等[56]利用磁控溅射技术在聚丙烯非织造布表面镀覆纳米Ag膜。未镀膜织物几乎不具备电磁屏蔽性能;
随着镀膜时间增加,织物表面Ag膜变得致密,电磁屏蔽效能值高达70 dB。Ziaja等[57]利用磁控溅射技术在聚丙烯无纺布上镀覆锌膜、氧化锌膜、钛膜及氧化钛膜。其中锌膜电磁屏蔽值最高达42 dB,氧化锌膜电磁屏蔽值不超过25 dB,钛膜及氧化钛膜电磁屏蔽值低于10 dB。沉积锌膜无纺布屏蔽效果如图6所示。Surdu等[58]利用磁控溅射技术在棉和涤纶织物表面沉积不同厚度的Cu膜。镀膜后织物的电磁屏蔽性能相较于原织物得到了显著提高。同样在织物表面沉积复合膜也可以显著提高织物的电磁屏蔽性能,例如,Meng等[59]利用直流和射频共溅技术在涤纶织物表面镀覆Ag/Cu复合膜,原样屏蔽效能值为5 dB,镀覆复合膜后织物屏蔽效能值为29.8~35.65 dB。Xu等[60]利用磁控溅射技术,使用银和聚四氟乙烯靶材,在聚酯无纺布表面镀覆了Ag/FC复合膜,原织物电磁屏蔽值为0 dB,镀覆银膜织物电磁屏蔽值为25.35 dB。同样,以上研究大多存在电磁屏蔽耐久性较差的问题,膜-基结合力较弱,电磁屏蔽性能会随着薄膜脱落而下降,提高电磁屏蔽织物耐久性有待研究。

2.6其他性能

除了以上功能外,磁控溅射还可用于红外屏蔽、光热管理、防热防火、光催化等纺织品特种功能整理方面。利用磁控溅射技术在织物上沉积Cu膜[61]、Ti-O膜[62]等,在织物上形成对红外具有高反射率的纳米薄膜,可以显著增强织物的红外屏蔽性能,应用到军事领域。在织物的一面沉积Zn膜、Ti膜、ZrN膜、Cu/TiO2复合膜等,当该面朝向阳光时,利用纳米薄膜对太阳光的高吸收以及对热辐射的高反射,实现对人体的保温功能;
在同一织物的另一面沉积TiO2膜等,当该面朝向阳光时,利用对太阳光具有高反射率的薄膜,实现对人体的散热功能,能够制备双功能兼具的光热管理纺织品[63-65]。Yan等[66]利用磁控溅射技术在PU涂层聚酯织物上沉积Ag膜,由于Ag膜优异的导电性,对温度的高敏感性,能够制备可穿戴柔性温度传感器,随时检测人体温度,预防多种疾病,在健康监测和医疗保健等方面具有重要作用。在织物上沉积Al膜[67]、Ag/TiO[68]2膜等热导率较高,隔热性能较好的阻燃涂层,可用于制备防热和防火的防护服或手套等。在织物上沉积Ag/TiO[69]2、Ag/Ag2O/TiO[70]2、CuxO/TiO[71]2等多層膜,可以制备光催化纺织品,金属粒子的掺杂减少了光生电子-空穴的复合,进一步提高了TiO2的光催化性能,在环保、生物、化学、医学等领域展现出广阔的应用前景。

3磁控溅射技术在仿生结构生色纺织品制备中的应用

结构生色是材料的微纳结构与光相互作用而产生的,作用方式主要有薄膜干涉、衍射光栅、光子晶体、光散射等,其中薄膜干涉是结构生色最主要的来源之一。薄膜干涉又可分为单层薄膜干涉和多层薄膜干涉。

单层薄膜干涉原理如图7所示。当自然光射入连续的薄膜,入射光在薄膜上表面反射后得第一束光,透过薄膜产生折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光存在一定的光程差,当光程差满足一定条件时,会在薄膜的上表面相遇发生相长干涉(最亮)或相消干涉(最暗),当相长干涉的光进入人的视觉系统,便会产生相应的结构色视觉效果。单层薄膜干涉产生的结构色主要与薄膜的厚度、薄膜折射指数和光入射角度等有关,当折射率恒定,改变薄膜厚度,两束光的光程差会发生改变,从而干涉波长也会发生相应的改变,最终产生不同的结构色。单层薄膜干涉结构生色在自然界中比较常见,比如阳光下的肥皂泡、蜜蜂的翅膀、水面上的油膜等。

多层薄膜通常由两种不同折射指数的薄膜交替叠加组成,反射波长与两种薄膜的折射指数、厚度和折射角相关。相比于单层薄膜干涉,多层薄膜干涉产生的结构色饱和度更高、色彩更加明亮,形式也比较多样。在自然界中,龟甲虫、独角仙、鞭尾蜥蜴、蝴蝶翅膀等都属于多层薄膜干涉[72-77]。

磁控溅射作为一种高速低温、生态环保的薄膜沉积技术,根据薄膜干涉原理,在织物上沉积单层膜或多层膜,可以制备多种颜色的结构生色纺织品。Yuan等[78]利用磁控溅射技术在涤纶机织物上镀覆Ag/TiO2复合膜制备结构生色纺织品。随着TiO2膜厚度的增加,织物颜色分别为蓝色、绿色和黄色。同时,该课题组还在涤纶织物上沉积了Al/TiO2复合薄膜。TiO2膜溅射时间为10、12、18、20、26、27、30、45 min时,分别对应的颜色为蓝紫色、蓝色、青色、绿色、黄色、黄红、橙色、蓝绿色[79],其中织物原样、溅射10 min、溅射时间12 min的织物样品如图8所示。田桓荣[80]利用磁控溅射技术在棉织物上镀覆TiO2单层膜,发现不能产生结构色;
先溅射基础层Cu膜,再溅射TiO2膜,织物出现了结构色。当Cu膜溅射时间为10 min,TiO2膜厚度为20、30、50、70 min时,织物所对应的颜色为紫色、蓝色、黄色、红色;
此外,研究发现薄膜较薄时是光的散射和薄膜干涉共同作用的结果,继续增加厚度才是薄膜干涉单独作用的结果。

Zhang等[81]采用磁控溅射法在涤纶织物上沉积Ag/Ag2O复合膜,设定Ag膜的厚度为400 nm,再镀覆不同厚度的Ag2O薄膜,复合膜的沉积过程如图9所示。当Ag2O层的厚度为10、25、30、42、85、105 nm,分别对应的结构色为黄色、紫色、橙色、靛蓝色、蓝色和绿色。叶丽华等[82]采用磁控溅射技术在涤纶非织造布和桑蚕丝织物上溅射SiO2、TiO2周期性薄膜制备结构生色织物。镀膜后的涤纶纤维网状部分大都呈现黄色,而凹坑区呈现绿色;
桑蚕丝织物则呈现出黄色、蓝色和紫色。Yip等[83]在90%纯棉和10%氨纶的白色经编针织物上镀覆Ag膜,发现织物在溅射处理后呈现出淡绿色和淡黄色。这可能是由于溅射过程中高能银离子的轰击,改变了原织物的颜色。Peng等[84]采用磁控溅射技术在涤纶织物上镀覆TiO2/Cu/TiO2“三明治”结构的复合膜。其中TiO2薄膜溅射时间均为120 min,Cu膜溅射时间分别为5、10、20、30 min时,分别对应的颜色为绿色、黄色、棕色和紫色。以上研究虽都制备出各种结构生色纺织品,但薄膜与织物结合牢度较差,所以高结合牢度、色彩亮丽的结构生色纺织品还需进一步探索。

除以上实验室研究工作外,广东欣丰科技有限公司自主设计开发了工业级的连续化磁控溅射设备,建立了几十种配色方案,能够制备出金属色、渐变色、角度色和双面色等一系列结构生色纺织品。在传统印染难以上色的织物上也可以进行镀膜得到丰富的结构色。如,在芳纶织物上沉积TiO2、Zn、CuO等纳米薄膜,能够呈现出赤橙黄绿青蓝紫的多种颜色[85];
在聚酰亚胺织物、玻璃纤维上沉积Ti/Zn薄膜,再沉积一层不锈钢膜作为保护膜,可得到多种颜色的结构色,并且所制备的镀膜织物色牢度较好,并具有抗紫外线、防水、抗静电、抗菌等功能[86-87]。但由于磁控溅射设备较为昂贵,结构生色纺织品色系尚不齐全等原因,磁控溅射技术结构生色纺织品的广泛应用受到一定的限制[88-91]。

4磁控溅射膜与纺织基材的结合稳定性研究

磁控溅射镀膜织物的膜-基结合牢度是评价磁控溅射织物性能的一项重要指标。磁控溅射薄膜与织物的结合主要是通过范德华力(薄膜与基材之间的分子间作用力)、扩散附着(靶材和基材原子相互扩散缠结,形成界面层)、机械锁合(基材表面不平整,靶材原子与基材相互咬合)、静电吸附(薄膜与基材带有的电子接触、转移产生电荷,产生静电吸附)等,随靶材类型、基材类型、溅射工艺的不同,膜-基结合牢度有较大差异。

磁控溅射技术在功能性纺织品和结构生色纺织品的制备中,不同程度地存在薄膜与基材结合牢度差的问题,所以结合牢度成为磁控溅射技术应用方面急需解决的问题。Meng等[92]使用氧等离子体对涤纶织物进行预处理,再利用磁控溅射技术对织物镀覆Cu膜。经过等离子体处理的织物表面出现了明显的刻蚀效应,导致织物表面变粗糙,提高了薄膜和织物的附着力,从而涤纶织物与Cu薄膜的牢度得到提高。Peng等[93]对涤纶织物进行激光预处理,再利用磁控溅射技术织物表面镀覆Cu膜。激光处理后,织物表面发生刻蚀变得粗糙,金属薄膜和涤纶织物之间的粘附性提高,从而薄膜与织物牢度得到显著提高。Zhang等[94]采用磁控溅射技术在聚酯(PET)织物上镀覆Cu膜,为提高Cu膜在合成汗液中的稳定性,采用苯并三唑(BTA)溶液对镀膜织物进行处理。未处理织物在汗液中腐蚀严重,处理浓度越高,镀膜织物稳定性越高,这是由于BTA可以和Cu形成配位化合物,保護Cu膜不被腐蚀。Liu等[95]利用磁控溅射技术在聚丙烯无纺布表面镀覆Ag膜,随后使用多巴胺溶液对织物进行后处理。随着多巴胺处理时间的增加,织物经过洗涤后,其Ag膜保持高度的完整性,织物的耐久性也得到了显著的提高。这是由于多巴胺可以和织物形成共价键,和Ag形成配位键,提高了薄膜和织物之间的附着力,进而提高了耐久性;
但用多巴胺处理会使织物颜色发生变化。该课题组先用聚丙烯酸酯(PA)处理聚酯(PET)织物,通过填充法使织物表面形成连续的薄膜,再在织物表面镀覆Ti/Ag薄膜以及Ti/Ag/Ti三层膜。经过剥离实验后,经过PA处理的镀膜织物比未处理的牢度要好,说明PA处理织物后可以提高金属薄膜和织物的附着力;
其中Ti/Ag薄膜剥离牢度最好,分层多次镀膜容易导致薄膜之间结合牢度变差[96]。杜丽娟等[97]利用磁控溅射技术在涤纶无纺布表面镀覆Al膜,再将黏合剂涂覆在织物表面。在强烈的皂洗条件下,镀膜织物的耐皂洗色牢度仍旧良好;
未经黏合剂处理的织物耐摩擦色牢度为1~2级,经过黏合剂处理后摩擦色牢度达4~5级。这是由于黏合剂渗入织物内部使纤维紧密连接在一起,从而薄膜和织物的结合牢度得到提高;
但使用黏合剂处理会使织物手感变差。

以上都是以涤纶等合成纤维为基材进行研究,在天然纤维基材应用方面研究较少。蔡珍[98]利用磁控溅射技术在涤纶及蚕丝织物上镀覆Cu膜,镀膜涤纶织物耐皂洗色牢度及耐摩擦色牢度优于镀膜蚕丝织物。刘明雪等[99]针对天然纤维镀膜织物耐皂洗色牢度较差,甚至存在整层膜脱落的问题,以涤纶、棉及蚕丝织物为基材,利用磁控溅射技术在织物表面镀覆Cu膜及Ti膜,探讨了织物初始含水率及等离子体处理对磁控溅射织物牢度的影响,并应用SEM和EDS等分析手段定性定量地观察和分析了涤纶、棉和蚕丝3种典型纤维的纺织基材上磁控溅射产品的耐皂洗色牢度,发现纤维的热性能和吸湿溶胀性能的差异性是造成磁控溅射结构生色织物耐洗色牢度不同的根本原因。涤纶纤维为热塑性纤维,磁控溅射高能粒子沉积到纤维表面时动能转化为热能,使涤纶纤维瞬间局部软化甚至熔融,黏结溅射粒子,从而呈现较高的结合牢度,且涤纶纤维为疏水性纤维,水对涤纶微结构的影响小,皂洗过程几乎不影响溅射沉积粒子对基底织物的结合牢度。棉和蚕丝纤维则不然,它们并非热塑性纤维,纤维对磁控溅射粒子无熔融黏结作用,而且棉和蚕丝均为亲水性纤维,具有高吸湿溶胀性,皂洗过程中水分子的侵入削弱纤维和溅射沉积粒子间的作用力,且溶胀后的纤维空隙变大,即使有部分嵌入的粒子也会松动脱落,致使溅射膜与织物基材的结合牢度差,易整层脱落。在探明原由的基础上,该课题组尝试对棉和蚕丝织物进行“加法”改性,构建出对溅射粒子具有接受及稳固作用的纤维表面,显著提高了棉和蚕丝镀膜织物的色牢度[100]。Xu等[101]先用聚乙烯醇(PVA)对棉织物进行前处理,再用磁控溅射技术在棉织物上沉积Ag膜。PVA分子之间可以形成氢键,从而在织物表面形成PVA薄膜;
PVA在填充过程中是棉纤维彼此之间有了更紧密的黏附力;
并且棉织物具有可以通过氢键与PVA很好结合的羟基结构,所以PVA薄膜与织物紧密结合;
此外,镀覆Ag膜后,由于PVA的黏附作用,使得Ag膜紧密覆盖在织物表面。由此,PVA提高了棉织物和薄膜的结合牢度。

5结语

磁控溅射技术不仅可以制备具有抗菌、抗静电等一种或多种功能的纺织品,还可以利用薄膜干涉原理制备结构生色纺织品。相较于传统染整行业存在水资源消耗大,废水排放污染环境等问题,磁控溅射“干法整理”和“干法着色”技术对于染整行业可持续发展有着重要的推动作用,契合低碳、环保理念,在纺织领域具有良好的发展前景。但磁控溅射技术也存在一些问题和不足:a)靶材利用率较低,磁场分布不够均匀,容易形成溅射凹沟,导致靶材报废,可以通过调控磁场分布、设计靶材等方法进行改善;
b)磁性靶材溅射较困难,可以通过升高靶材温度进行改善,超过磁控靶材的居里温度后,铁磁材料变为顺磁材料,磁屏蔽效应消失,就能进行正常溅射;
c)磁控溅射薄膜与天然纤维基材的结合牢度较差,通过对基材的表面改性等方法可提高膜-基结合牢度。目前,磁控溅射技术存在的上述问题都在一定程度上取得了研究进展,但广泛应用还面临着很大的挑战,有待于学术界和工业界的共同努力,进一步研究创新和开拓应用。

参考文献:

[1]张以忱.真空镀膜技术[M].北京:冶金工业出版社,2009:82-97.

ZHANG Yichen. Vacuum Coating Technology[M]. Beijing:
Metallurgical Industry Press, 2009:
82-97.

[2]GROVE R W. On the electro-chemical polarity of gases[J]. Philosophical Transactions of the Royal Society of London, 1852, 142:
87-101.

[3]CHAPIN J S. Sputtering process and apparatus:
US, 4166018[P]. 1979-08-28.

[4]WINDOW B, SAVVIDES N. Unbalanced dc magnetrons as sources of high ion fluxes[J]. Journal of Vacuum Science & Technology A:
Vacuum Surfaces and Films, 1986, 4(3):
453-456.

[5]SAVVIDES N, WINDOW B. Unbalanced magnetron ion-assisted deposition and property modification of thin films[J]. Journal of Vacuum Science & Technology A:
Vacuum Surfaces and Films, 1986, 4(3):
504-508.

[6]李芬,朱穎,李刘合,等.磁控溅射技术及其发展[J].真空电子技术,2011(3):49-54.

LI Fen, ZHU Ying, LI Liuhe, et al. Review on magnetron sputtering technology and its development[J]. Vacuum Electronics, 2011(3):
49-54.

[7]MIAO D G, JIANG S X, LIU J, et al. Fabrication of copper and titanium coated textiles for sunlight management[J]. Journal of Materials Science:
Materials in Electronics, 2017, 28(13):
9852-9858.

[8]方应翠.真空镀膜原理与技术[M].北京:科学出版社,2014:80-189.

FANG Yingcui. Principle and Technology of Vacuum Coating[M]. Beijing:
Science Press, 2014:
80-189.

[9]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:442-539.

TIAN Minbo. Thin Film Technologies and Materials[M]. Beijing:
Tsinghua University Press, 2006:
442-539.

[10]ELLMER K. Magnetron sputtering of transparent conduc-tive zinc oxide:
Relation between the sputtering parameters and the electronic properties[J]. Journal of Physics L:
Applied Physics, 2000, 33(4):
17-32.

[11]WEI Q F, QI L, HOU D Y, et al. Surface characte-rization of functional nanostructures sputtered on fiber substrates[J]. Surface and Coatings Technology, 2006, 201(3/4):
1821-1826.

[12]HUANG X M, MENG L L, WEI Q F, et al. Effect of substrate structures on the morphology and interfacial bonding properties of copper films sputtered on polyester fabrics[J]. International Journal of Clothing Science and Technology, 2017, 29(1):
39-46.

[13]田民波.溅射镀膜的特点和应用(一)[J].稀有金属,1987,11(1):35-40.

TIAN Minbo. Characteristics and application of sputtering coating(1)[J]. Chinese Journal of Rare Metals, 1987, 11(1):
35-40.

[14]罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.

LUO Peng, WANG Xiaobo, GONG Chunzhi, et al. Research progress of high entropy alloy thin films prepared by magnetron sputtering[J]. China Surface Engineering, 2021, 34(5):
53-66.

[15]SIGMUND P. Theory of sputtering. I. sputtering yield of amorphous and polycrystalline targets[J]. Physical Review, 1969, 184(2):
383-416.

[16]陈明,王君,陈长琦,等.基于Sigmund理论的溅射产额计算及分析[J].真空,2007,44(2):44-47.

CHEN Ming, WANG Jun, CHEN Changqi, et al. Calculation and analysis based on Sigmund"s theory for sputtering yield[J]. Vacuum, 2007, 44(2):
44-47.

[17]徐萬劲.磁控溅射技术进展及应用(上)[J].现代仪器,2005,11(5):1-5.

XU Wanjin. Recent developments and applications in magnetron sputtering[J]. Modern Instruments, 2005, 11(5):
1-5.

[18]JIANG S X, XU J T, CHEN Z M, et al. Enhanced electro-conductivity and multi-shielding performance with copper, stainless steel and titanium coating onto PVA impregnated cotton fabric[J]. Journal of Materials Science Materials in Electronics, 2018, 29(7):
5624-5633.

[19]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003:41-59.

TANG Weizhong. Principle, Technology and Application of Thin Film Preparation[M]. Beijing:
Metallurgical Industry Press, 2003:
41-59.

[20]TAN X Q, LIU J Y, NIU J R, et al. Recent progress in magnetron sputtering technology used on fabrics[J]. Materials (Basel), 2018, 11(10):
1953.

[21]黃美林,鲁圣国,杜文琴,等.磁控溅射法制备柔性纺织面料基纳米薄膜的研究与进展[J].真空科学与技术学报,2017,37(12):1194-1200.

HUANG Meilin, LU Shengguo, DU Wenqin, et al. Latest progress in magnetron sputtered nanocoatings on flexible textile fabric substrate[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(12):
1194-1200.

[22]SCHOLZ J, NOCKE G, HOLLSTEIN F, et al. Investiga-tions on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties[J]. Surface and Coatings Technology, 2005, 192(2/3):
252-256.

[23]HUANG M L, WU Y Z, FAN F, et al. Antibacterial and ultraviolet protective neodymium-doped TiO2 film coated on polypropylene nonwoven fabric via a sputtering method[J]. Journal of Engineered Fibers and Fabrics, 2021, 16:
2110252.

[24]JIN Y M, JIAO S J, LU H L, et al. Localized surface plasmon-enhanced ultraviolet and visible photoresponse based on ZnO films with Au nanoparticles[J]. Journal of Electronic Materials, 2020, 49(8):
4491-4497.

[25]HUANG M L, LU S G, DU W Q, et al. Performance of FC film deposited on PET fabric by a magnetron sputtering method[C]//Proceedings of the 2017 International Conference on Information Technology and Intelligent Manufacturing, IEEE,2017:
116-119.

[26]丁子寒,初曦,邹婷婷,等.防水透湿织物的研究进展[J].服装学报,2019,4(5):383-387,419.

DING Zihan, CHU Xi, ZOU Tingting, et al. Research progress on waterproof and moisture permeable fabric[J]. Journal of Clothing Research, 2019,4(5):383-387,419.

[27]于磊,蔡东照,吴欲兵,等.PU纳米纤维表面溅射PTFE防水透湿膜研究[J].化工新型材料,2015,43(10):62-64.

YU Lei, CAI Dongzhao, WU Yubing, et, al. Study on the waterproof and moisture permeability property of PU nanofibrous membrane sputtered with PTFE[J]. New Chemical Materials, 2015, 43(10):
62-64.

[28]王东,齐宏进.磁控溅射法制备防水透湿织物的性能研究[J].棉纺织技术,2002,30(1):17-19.

WANG Dong, QI Hongjin. Study on the properties of waterproof & moisture permeable fabrics prepared by magnetron sputtering[J]. Cotton Textile Technology, 2002, 30(1):
17-19.

[29]HUANG F L, WEI Q F, LIU Y, et al. Surface functio-nalization of silk fabric by PTFE sputter coating[J]. Journal of Materials Science, 2007, 42(19):
8025-8028.

[30]JIANG S X, XU J T, MIAO D G, et al. Water-repellency, ultraviolet protection and infrared emissivity properties of AZO film on polyester fabric[J]. Ceramics International, 2017, 43(2):
2424-2430.

[31]MIAO D G, ZHAO H M, PENG Q X, et al. Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering[J]. Ceramics International, 2015, 41(1):
1595-1601.

[32]LEE S Y, HONG T M, JIN D Y, et al. Properties of aluminum deposited chemically recycled PET fabrics[J]. Fibers and Polymers, 2015, 16(12):
2698-2703.

[33]劉玮,张力,曹义坡,等.常见金属离子抗菌剂及在医用敷料中的应用[J].中国急救复苏与灾害医学杂志,2015,10(11):1095-1098.

LIU Wei, ZHANG Li, CAO Yipo, et al. Common metal ion antibacterial agent and its application in medical dressing[J]. China Journal of Emergency Resuscitation and Disaster Medicine, 2015, 10(11):
1095-1098.

[34]HALL R E, BENDER G, MARQUIS R E. Inhibitory and cidal antimicrobial actions of electrically generated silver ions[J]. Journal of Oral and Maxillofacial Surgery, 1987, 45(9):
779-784.

[35]IRFAN M, PERERO S, MIOLA M, et al. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique[J]. Cellulose, 2017, 24(5):
2331-2345.

[36]高秋瑾,彭程程,王鸿博,等.丝织物基纳米结构银膜形貌及抗菌性能研究[J].化工新型材料,2010,38(5):75-77,99.

GAO Qiujin, PENG Chengcheng, WANG Hongbo, et al. Study on nano-structured silver film morphology and antibacterial[J]. New Chemical Materials, 2010, 38(5):
75-77, 99.

[37]RANI K V, SARMA B, SARMA A. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties[J]. Vacuum, 2017, 146:
206-215.

[38]HE R D, LI J W, CHEN M, et al. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks[J]. Journal of Hazardous Materials, 2022, 428:
128239.

[39]黄马壮.一种基于磁控溅射纳米膜材料的抗菌口罩:CN213370084U[P].2021-06-08.

HUANG Mazhuang. An antibacterial mask based on magnetron sputtering nanofilm material:
CN213370084U[P]. 2021-06-08.

[40]刘小东,高世会.纯棉织物防紫外功能整理研究进展[J].纺织导报,2021(12):49-50,52.

LIU Xiaodong, GAO Shihui. Research progress on ultraviolet resistant finishing of cotton fabrics[J]. China Textile Leader, 2021(12):
49-50, 52.

[41]肖顶.防紫外纤维及织物研究进展[J].山东化工,2021,50(10):75-76,80.

XIAO Ding. Research progress of anti-ultraviolet fibers and fabrics[J]. Shandong Chemical Industry, 2021, 50(10):
75-76, 80.

[42]李超荣,舒顺新,谢勇,等.磁控溅射纳米纤维基银膜的结构和性能[J].纺织学报,2014,35(4):32-36.

LI Chaorong, SHU Shunxin, XIE Yong, et al. Structure and properties of Ag coatings on nanofibers prepared by magnetron sputtering[J]. Journal of Textile Research, 2014, 35(4):
32-36.

[43]JIANG S X, QIN W F, GUO R H, et al. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering[J]. Surface and Coatings Technology, 2010, 204(21/22):
3662-3667.

[44]KUDZIN M H, MROZINSKA Z, KACZMAREK A, et al. Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials[J]. Materials (Basel), 2020, 13(18):
3971.

[45]YUAN X H, WEI Q F, CHEN D S, et al. Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering[J]. Textile Research Journal, 2016, 86(8):
887-894.

[46]孟灵灵,魏取福,严忠杰,等.磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J].纺织学报,2021,42(3):143-148.

MENG Lingling, WEI Qufu, YAN Zhongjie, et al. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering[J]. Journal of Textile Research, 2021, 42(3):
143-148.

[47]姚江薇,沈国建,邹专勇,等.抗静电涤纶功能织物开发综述[J].上海纺织科技,2021,49(4):1-4,18.

YAO Jiangwei, SHEN Guojian, ZOU Zhuanyong, et al. Review on the development of antistatic polyester functional fabric[J]. Shanghai Textile Science & Technology, 2021, 49(4):
1-4, 18.

[48]彭靈慧,郭荣辉,兰建武,等.磁控溅射镀铜芳纶织物的制备及其性能研究[J].科学技术与工程,2017,17(11):89-93.

PENG Linghui, GUO Ronghui, LAN Jianwu, et al. Preparation and properties of copper coated kevlar fabric by magnetron sputtering[J]. Science Technology and Engineering, 2017, 17(11):
89-93.

[49]袁小红,魏取福,陈东生,等.磁控溅射工艺参数对涤纶机织物基纳米金属薄膜抗静电性能的影响[J].材料科学与工程学报,2014,32(6):848-852.

YUAN Xiaohong, WEI Qufu, CHEN Dongsheng, et al. Influence of process paramenters on antistatic property of metal thin film by magnetron sputtering on polyester fabric[J]. Journal of Materials Science &Engineering, 2014, 32(6):
848-852.

[50]张建英,张建波.磁控溅射纺织品的性能研究[J].针织工业,2018(2):51-53.

ZHANG Jianying, ZHANG Jianbo. Properties of magnetron sputtered textile[J]. Knitting Industries, 2018(2):
51-53.

[51]CHU C L, HU X F, YAN H Q, et al. Surface functio-nalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering[J]. E-Polymers, 2021, 21(1):
140-150.

[52]吴家斌.PP基纳米氧化锌/铜复合膜制备及其性能研究[D].芜湖:安徽工程大学,2014:12-39.

WU Jiabin. Preparation and Properties of ZnO/Cu Composite Films Deposited on PP[D]. Wuhu:
Anhui Polytechnic University, 2014:
12-39.

[53]WANG W, LI W Y, GAO C C, et al. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties[J]. Applied Surface Science, 2015, 342:
120-126.

[54]谭学强,闫宗瑶,刘佳音,等.电磁屏蔽织物的研究新进展[J].天津纺织科技,2021(2):57-60.

TAN Xueqiang, YAN Zongyao, LIU Jiayin, et al. Recent progress in research on electromagnetic shielding fabrics[J]. Tianjin Textile Science & Technology, 2021(2):
57-60.

[55]李强林,黄方千,任建华,等.磁控溅射镀铜钛织物及其电磁屏蔽性能[J].天津纺织科技,2015(2):7-9,12.

LI Qianglin, HUANG Fangqian, REN Jianhua, et al. Magnetron sputtering copper-titanium fabric and its electromagnetic shielding properties[J]. Tianjin Textile Science & Technology, 2015(2):
7-9, 12.

[56]储长流,甘贤鹏,叶念念,等.基于磁控溅射的聚丙烯/纳米银复合非织造功能材料的制备及性能研究[J].化工新型材料,2015,43(4):79-81,85.

CHU Changliu, GAN Xianpeng, YE Niannian, et al. Preparation and performance of polypeopylene/nano-silver non-woven functional composites based on magnetron sputtering[J]. New Chemical Materials, 2015, 43(4):
79-81, 85.

[57]ZIAJA J, OZIMEK M, KOPROWSKA J. Metallic and oxide Zn and Ti layers on unwoven fabric as shields for electromagnetic fields[C]//International Symposium on Electromagnetic Compatibility-EMC Europe. Athens, Greece.IEEE, 2009:
1-4.

[58]SURDU L, AILENI R M, RADULESCU R I, et al. Research regarding electromagnetic shielding achieved by the fabrics support[J]. IOP Conference Series:
Materials Science and Engineering, 2020, 827(1):
012060.

[59]MENG L L, WANG Y J, WEI Q F, et al. Study on the structure and properties of Ag/Cu nanocomposite film deposited on the surface of polyester substrates[J].The Journal of the Textile Institute, 2021, 112(10):
1671-1677.

[60]XU W Z, YUAN, X H, WEI A F, et al. Characterisation of PET nonwoven deposited with Ag/FC nanocomposite films[J]. Surface Engineering, 2018, 34(11/12):
838-845.

[61]JIA L L, FU B H, LU M L, et al. High-performance aramid fabric in infrared shielding by magnetron sputtering method[J]. Materials Research Express, 2020, 7(5):
056401.

[62]NGUYEN T N, CHEN Y H, CHEN Z M, et al. Micros-tructure, near infrared reflectance, and surface temperature of Ti-O coated polyethylene terephthalate fabrics prepared by roll-to-roll high power impulse magnetron sputtering system[J]. Thin Solid Films, 2018, 663:
1-8.

[63]李強,罗皓,朱屹凝,等.一种保温与散热双功能热管理织物及其制备方法:CN113622204A[P].2021-11-09.

LI Qiang, LUO Hao, ZHU Qining, et al. A thermal management fabric with double functions of heat preservation and heat dissipation and a preparation method thereof:
CN113622204A[P]. 2021-11-09.

[64]QIU S, JIA H, JIANG S X. Fabrication and characte-rization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters, 2021, 300(11):
130217.

[65]王超,谢春萍,苏旭中,等.一种发热织物的制造方法:CN102493171A[P].2012-06-13.

WANG Chao, XIE Chunping, SU Xuzhong, et al. A manufacturing method of heating fabric:
CN102493171A[P]. 2012-06-13.

[66]YAN Z Y, LIU J Y, NIU J R. Research of a novel Ag temperature sensor based on fabric substrate fabricated by magnetron sputtering[J]. Materials (Basel), 2021, 14(20):
6014.

[67]MISKIEWICZ P, TOKARSKA M, FRYDRYCH I, et al. Assessment of coating quality obtained on flame-retardant fabrics by a magnetron sputtering method[J]. Materials (Basel), 2021, 14(6):
1348.

[68]ZHUO T T, HE S, XIN B J, et al. Preparation and characterization of heat-insulating Ag/TiO2 composite membranes based on magnetron sputtering technology[J]. Journal of Materials Research, 2020, 35(5):
473-480.

[69]YUAN X H, LIANG S Z, KE H Z, et al. Photocatalytic property of polyester fabrics coated with Ag/TiO2 composite films by magnetron sputtering[J]. Vacuum, 2020, 172:
109103.

[70]YU H L, WU Q X, WANG J, et al. Simple fabrication of the Ag-Ag2O-TiO2 photocatalyst thin films on polyester fabrics by magnetron sputtering and its photocatalytic activity[J]. Applied Surface Science, 2020, 503:
144075.

[71]ABIDI M, ASSADI A A, BOUZAZA A, et al. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light[J]. Applied Catalysis B:
Environmental, 2019, 259:
118074.

[72]LIU G J, ZHOU L, WU Y J, et al. The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly[J]. Journal of Applied Polymer Science, 2015, 132(13):
41750.

[73]KINOSHITA S, YOSHIOKA S. Structural colors in nature:
The role of regularity and irregularity in the structure[J]. Chemphyschem, 2005, 6(8):
1442-1459.

[74]朱小威,邢鐵玲.结构生色纺织品的研究进展[J].纺织科学与工程学报,2020,37(4):66-72.

ZHU Xiaowei, XING Tieling. Research progress of structural color textile[J]. Journal of Textile Science and Engineering, 2020, 37(4):
66-72.

[75]NOSE K. Structurally colored fiber "Morphotex"[J]. Annals of the High Performance Paper Society, 2004, 43:
17-21.

[76]方子鑫,闫宗瑶,刘建勇.结构生色及其在纺织领域的应用[J].印染,2021,47(1):74-80.

FANG Zixin, YAN Zongyao, LIU Jianyong. Structural coloring and its application in textile[J]. China Dyeing & Finishing, 2021, 47(1):
74-80.

[77]王晓辉,刘国金,邵建中.纺织品仿生结构生色[J].纺织学报,2021,42(12):1-14.

WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12):
1-14.

[78]YUAN X, XU W, HUANG F, et al. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films[J]. Surface Engineering, 2017, 33(3):
231-236.

[79]YUAN X H, YE Y J, LIAN M, et al. Structural coloration of polyester fabrics coated with Al/TiO2 composite films and their anti-Ultraviolet properties[J]. Materials (Basel), 2018, 11(6):
E1011.

[80]田桓荣.基于磁控溅射技术的金属/金属氧化物复合膜的结构生色纺织品的研究[D].天津:天津工业大学,2020:19-55.

TIAN Huanrong. Study on the Structural Colored Textile of Metal/metal Oxide Composite Film Based on Magnetron Sputtering Technology[D]. Tianjin:
Tiangong University, 2020:
19-55.

[81]ZHANG X, JIANG S X, CAI M, et al. Magnetron sputtering deposition of Ag/Ag2O bilayer films for highly efficient color generation on fabrics[J]. Ceramics Interna-tional, 2020, 46(9):
13342-13349.

[82]葉丽华,杜文琴.结构色织物的光学性能[J].纺织学报,2016,37(8):83-88.

YE Lihua, DU Wenqin. Optical properties of fabric with multiple structural colors[J]. Journal of Textile Research, 2016, 37(8):
83-88.

[83]YIP J, JIANG S Q, WONG C. Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments[J]. Surface and Coatings Technology, 2009, 204(3):
380-385.

[84]PENG L H, JIANG S X, GUO R H, et al. IR protection property and color performance of TiO2/Cu/TiO2 coated polyester fabrics[J]. Journal of Materials Science Materials in Electronics, 2018, 29(19):
16188-16198.

[85]王银川,余荣沾,刘琼溪,等.一种生态着色的芳纶:CN108130724A[P].2018-06-08.

WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. An ecologically colored aramid:
CN108130724A[P]. 2018-06-08.

[86]王银川,余荣沾,刘琼溪,等.一种能使聚酰亚胺着色的方法:CN108048808A[P].2018-05-18.

WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. A method for coloring polyimide:
CN108048808A[P]. 2018-05-18.

[87]王银川,余荣沾,刘琼溪,等.一种能使玻璃纤维着色的方法:CN108117279A[P].2018-06-08.

WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. A

method for coloring glass fibers:
CN108117279A[P]. 2018-06-08.

[88]刘琼溪,张欣,余荣沾.纳米生色技术的原理与优势[J].染整技术,2019,41(2):3-6.

LIU Qiongxi, ZHANG Xin, YU Rongzhan. Principle of nanocoloring technique and its advantages[J]. Textile Dyeing and Finishing Journal, 2019, 41(2):
3-6.

[89]刘琼溪,张欣,余荣沾,等.纳米生色面料防紫外线性能研究[J].染整技术,2019,41(6):13-15.

LIU Qiongxi, ZHANG Xin, YU Rongzhan, et al.Study on anti-UV properties of nano-chromogenic fabrics[J]. Textile Dyeing and Finishing Journal, 2019, 41(6):
13-15.

[90]刘琼溪,张欣,余荣沾,等.纳米生色面料的防水透气性能与抗菌性能[J].染整技术,2020,42(2):24-27.

LIU Qiongxi, ZHANG Xin, YU Rongzhan, et al.Water resistance/air permeability and anti-bacteria performance of nanochromophore fabric[J]. Textile Dyeing and Finishing Journal, 2020, 42(2):
24-27.

[91]刘琼溪,刘协权,倪新华,等.纳米生色:织物抗静电的新途径[J].染整技术,2020,42(2):20-23.

LIU Qiongxi, LIU Xiequan, NI Xinhua, et al. Nanocoloring:
A new approach of fabricantistatic[J]. Textile Dyeing and Finishing Journal, 2020, 42(2):
20-23.

[92]MENG L L, WEI Q F, LI Y L, et al. Effects of plasma pre-treatment on surface properties of fabric sputtered with copper[J]. International Journal of Clothing Science and Technology, 2014, 26(1):
96-104.

[93]PENG L H, GUO R H, LAN J W, et al. Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering[J]. Journal of Industrial Textiles, 2018, 48(2):
482-493.

[94]ZHANG X, MIAO D G, NING X, et al. The stability study of copper sputtered polyester fabrics in synthetic perspiration[J]. Vacuum, 2019, 164:
205-211.

[95]LIU C M, LIU J, NING X, et al. The effect of polydo-pamine on an Ag-coated polypropylene nonwoven fabric[J]. Polymers, 2019, 11(4):
627.

[96]LIU C M, XU J T, LIU Z Q, et al. Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti-Ag alloy thin films on PET fabrics by multi-target magnetron sput-tering[J]. Journal of Materials Science:
Materials in Electronics, 2018, 29(22):
19578-19587.

[97]杜莉娟,姚玉元,陈文兴.粘合剂涂层对磁控溅射镀铝织物牢度的影响[J].浙江理工大学学报,2007,24(2):122-124.

DU Lijuan, YAO Yuyuan, CHEN Wenxing. The influence of binder on combine fastness of aluminum fabric prepared by DC magnetron sputtering[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(2):
122-124.

[98]蔡珍.磁控濺射镀色织物制备及其色牢度研究[D].江门:五邑大学,2018:15-48.

CAI Zhen. Preparation and Color Fastness Research of Plated Color Fabric by Magnetron Sputtering[D]. Jiangmen:
Wuyi University, 2018:
15-48.

[99]刘明雪,赵倩,王晓辉,等.磁控溅射纳米膜与不同纺织基材的结合牢度[J].纺织学报,2021,42(2):135-141,147.

LIU Mingxue, ZHAO Qian, WANG Xiaohui, et al. Bonding fastness of magnetron sputtering nano-films with various textile substrates[J]. Journal of Textile Research, 2021, 42(2):
135-141, 147.

[100]刘明雪,王晓辉,赵倩,等.低温等离子体处理对纺织品磁控溅射镀膜的影响[J].丝绸,2021,58(2):1-6.

LIU Mingxue, WANG Xiaohui, ZHAO Qian, et al. Impact of low temperature plasma treatment on magnetron sputter coating of textiles[J]. Journal of Silk, 2021, 58(2):
1-6.

[101]XU J T, JIANG S X, PENG L H, et al. AgNps-PVA-coated woven cotton fabric:
Preparation, water repellency, shielding properties and antibacterial activity[J]. Journal of Industrial Textiles, 2019, 48(10):
1545-1565.

Research progress of magnetron sputtering applied in the textile field

QIAO Yangyang1, LIU Mingxue1, LIU Qiongxi2, ZHOU Lan1, SHAO Jianzhong1

1a.College of Textile Science and Engineering; 1b. MOE Engineering Research Center of Ecological Dyeing and Finishing

Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.Guangdong Rising Well Science & Technology

Co., Ltd., Kaiping 529300, China)

Abstract:
Magnetron sputtering technology refers to the technology of bombarding the solid cathode target with high-energy particles, and the atoms on the surface of the cathode target are excited and deposited on the surface of the substrate to form a thin film. The technology has the advantages of high deposition rate, small damage to the film layer, high purity and uniformity of the film prepared, and can achieve large area of industrial coating with uniform thickness. It is one of the most widely used film deposition technologies at present, and has been widely paid attention to in the textile field. On the one hand, magnetron sputtering technology, as a kind of "dry" coating technology, can be used to prepare various functional textiles by coating functional films on the surface of fabrics, which has been becoming an important way of "dry" finishing. On the other hand, the bionic structure color textile can be prepared by using magnetron sputtering technology to "dry" color the fabric through the film interference structure color principle. The application of this magnetron sputtering is beneficial to the sustainable development of textile dyeing and finishing industry.

This paper summarizes the research progress of magnetron sputtering technology in the fields of textile functionalization, structure coloring and film-substrate bonding stability. At present, magnetron sputtering technology has been studied in the preparation of functional textiles. The technology mainly realizes the surface modification of the fabric by depositing Cu, Ag, TiO2, ZnO and other thin films on the surface of the fabric. The operation is relatively simple, and not only can it give various functions to the textile, but also can basically maintain the original style of the fabric. A thin film with low surface energy is deposited on the surface of the fabric, which will not close all the pores between the yarns, so that the fabric has good waterproof and moisture permeability and certain air permeability. The use of metal nanoparticles to destroy the cell wall and protein of bacteria can obtain good antibacterial effect. Due to the small particle size and large specific surface area of the film, its unique quantum size effect leads to a significant increase in UV absorption. Some UV rays are reflected by the nano film, thus achieving excellent anti-UV effect. Antistatic and electromagnetic shielding textiles can be prepared by depositing a thin film with excellent electrical conductivity on the fabric surface. In recent years, magnetron sputtering has been studied more and more in the finishing of textile special functions such as infrared shielding, photothermal management, heat protection and fire prevention, and photocatalysis, and some important progress has been made. According to the principle of thin film interference, magnetron sputtering technology in the preparation of structural color textiles, deposition of single layer film or multilayer film on the fabric can prepare a variety of colors of structural color textiles, and has achieved a certain industrial application.

The film-base bonding fastness of magnetron sputtering coated fabrics is an important index to evaluate the properties of magnetron sputtering fabrics. In the preparation of functional textiles and structural color textiles, there are different degrees of poor bonding fastness between films and substrates, so the film-base bonding fastness has become an urgent problem to be solved in the application of magnetron sputtering technology. At present, proper chemical pretreatment or plasma surface modification on the surface of textile substrate has been proved to improve the fastness of film-base bonding, which opens up an effective way for the practical application of magnetron sputtering technology in the textile field.

Compared with the traditional dyeing and finishing industry, there are problems such as large consumption of water resources and environmental pollution caused by waste water discharge. The "dry finishing" and "dry coloring" technologies of magnetron sputtering play an important role in promoting the sustainable development of the dyeing and finishing industry. They conform to the concept of low carbon and environmental protection and have good development prospects in the textile field. However, magnetron sputtering technology also has some problems and shortcomings:
(a) the utilization rate of target materials is low, the distribution of magnetic field is uneven, and it is easy to form sputtering pits, which results in the abandonment of target materials. It can be improved by regulating magnetic field distribution and designing target materials. (b) The magnetic target sputtering is difficult, which can be improved by increasing the temperature of the target. When the Curie temperature of the magneto-controlled target is exceeded, the ferromagnetic material becomes paramagnetic material, the magnetic shielding effect disappears, and normal sputtering can be carried out. (c) The bonding fastness of magnetron sputtering film to natural fiber substrate is poor, and the bonding fastness of film-base can be improved by surface modification of the substrate. At present, research progress has been made to a certain extent to address the above problems of magnetron sputtering technology, but it still faces great challenges for the wide application, and the joint efforts of academia and industry are needed for further research, innovation and development of application.

Keywords:
magnetron sputtering; textiles; functional finishing, structural color; thin-film interference; bonding fastness.

收稿日期:20220827

網络出版日期:20220928

基金项目:国家自然科学基金项目(51773181,52003242)

作者简介:乔阳阳(1998—),女,河南濮阳人,硕士研究生,主要从事染整新技术方面的研究。

通信作者:邵建中,E-mail:jshao@zstu.edu.cn

猜你喜欢磁控溅射纺织品近红外光谱分析技术在纺织品定性定量分析上的应用纺织标准与质量(2022年1期)2022-07-12《纺织品织物折痕回复角的测定》正式发布纺织科学研究(2021年7期)2021-12-02自清洁纺织品的制备方法化工管理(2021年7期)2021-05-13C/C复合材料表面磁控溅射ZrN薄膜湖北农机化(2020年4期)2020-07-242019高功率脉冲磁控溅射沉积薄膜技术与应用会议将在兰州召开表面工程与再制造(2019年3期)2019-12-04第七类直销产品猜想:纺织品能否“独立” ?知识经济·中国直销(2018年4期)2018-04-18复杂腔体件表面磁控溅射镀膜关键技术的研究现代机械(2018年1期)2018-04-17工艺参数对直流磁控溅射法制备氧化铝薄膜的试验研究制造技术与机床(2017年3期)2017-06-23ISPO2018春夏功能性纺织品流行趋势纺织服装流行趋势展望(2016年4期)2016-05-04微波介质陶瓷谐振器磁控溅射金属化材料科学与工程学报(2016年5期)2016-02-27

推荐访问:磁控溅射 研究进展 领域

猜你喜欢