欢迎来到专业的优谦范文网平台! 工作总结 工作计划 心得体会 述职报告 思想汇报 事迹材料 疫情防控 共同富裕
当前位置:首页 > 范文大全 > 教案设计 > 正文

2023年度二次根式教案6篇(精选文档)

时间:2023-09-25 11:05:04 来源:网友投稿

二次根式教案一、说教材首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化下面是小编为大家整理的二次根式教案6篇,供大家参考。

二次根式教案6篇

二次根式教案篇1

一、说教材

首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化简二次根式的经历,为本节课的学习做了良好的铺垫;本节课的学习为后续学习二次根式的混合运算打下基础。

二、说学情

再来谈谈学生的情况。这一阶段的学生已经具备了一定的发现问题、解决问题的能力,逻辑思维和计算能力也有了很大的提升。因此教师在教学过程中,要针对学生的特点进行有针对的教学,以便于课程内容的有效展开。

三、说教学目标

基于以上分析,我制定了如下三维教学目标:

(一)知识与技能

掌握二次根式加减法的计算方法,并能用以解决简单问题。

(二)过程与方法

通过探究二次根式加减法的计算方法的过程,进一步感受由特殊到一般的思想,提升运算能力。

(三)情感、态度与价值观

感受数学和生活息息相关,提升学习数学的兴趣。

四、说教学重难点

在教学目标的实现过程中,教学重点是二次根式加减法的计算方法,教学难点是二次根式加减法的计算方法的探究。

五、说教法学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。

六、说教学过程

下面重点谈谈我对教学过程的设计。

(一)导入新课

此时我会请学生尝试总结二次根式加减法的计算方法。以学生的现有能力,能够说出其中的关键内容。我会在此基础上予以规范:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

以上活动使得学生亲身经历了知识的形成过程,更容易理解和接受,同时能够提升分析问题、解决问题与类比迁移等诸多方面的能力。

(三)课堂练习

对于本节课而言,探究计算方法是其中一项目标,巩固练习也同样重要。我会选用教材上的例1和例2作为课堂练习题。

例1的第(1)小题是两个具体的二次根式相减,相对简单,直接考查二次根式加减法的计算方法;第(2)小题二次根式的被开方数中含有字母,更加具有一般性,在一定程度上考验抽象思维。

例2第(1)小题难度有所提升,不仅二次根式相对复杂,而且是加减混合运算;第(2)小题更是在加减混合运算的基础上出现了小括号,并且各括号内部无法合并,因此多了一个去括号的步骤。

这样的练习题不仅进一步完善了二次根式加减法的计算方法,而且能让学生体会到二次根式的加减与整式的加减在流程上的一致性,从而建立新旧知识间的联系,完善知识体系。

(四)小结作业

最后,我会请学生自主总结本节课的收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

课后作业一方面是完成课后练习,再次巩固二次根式的加减法;另一方面是总结二次根式的概念、性质及运算法则,以便形成系统的认知。

二次根式教案篇2

第十六章 二次根式

代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式

5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论。20=22×5,所以正整数的最小值为5.)

6、(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-)。(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7、解:(1) 。 (2)宽:3 ;长:5   。

8、解:(1) =。 (2)(3)2=32×()2=18. (3)=(-2)2×=。 (4)-=-=-3π。 (5) = =。

9、解:原式=-=-.∵x=6,∴x+1>0,x-80,∴当x>0时, 在实数范围内有意义。 (4)∵即x>-1,∴当x>-1时,在实数范围内有意义。

8、解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去)。当h=10时,t= =,当h=25时,t= =。故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

9、解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.

10、解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =。

如图所示,根据实数a,b在数轴上的位置,化简:+。

〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简。

解:由数轴可得:a+b0,

∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想。

已知a,b,c为三角形的三条边,则+= 。

〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简。因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c

二次根式教案篇3

【教学目标】

1、运用法则

进行二次根式的乘除运算;

2、会用公式

化简二次根式。

【教学重点】

运用

进行化简或计算

【教学难点】

经历二次根式的乘除法则的探究过程

【教学过程】

一、情境创设:

1、复习旧知:什么是二次根式?已学过二次根式的哪些性质?

2、计算:

二、探索活动:

1、学生计算;

2、观察上式及其运算结果,看看其中有什么规律?

3、概括:

得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

将上面的公式逆向运用可得:

积的算术平方根,等于积中各因式的算术平方根的积。

三、例题讲解:

1、计算:

2、化简:

小结:如何化简二次根式?

1、(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

2.P62结果中,被开方数应不含能开得尽方的因数或因式。

四、课堂练习:

(一)。P62 练习1、2

其中2中(5)

注意:

不是积的形式,要因数分解为36×16=242.

(二)。P67 3 计算 (2)(4)

补充练习:

1、(x>0,y>0)

2、拓展与提高:

化简:1)。(a>0,b>0)

2)。(y

2、若,求m的取值范围。

☆3.已知:,求的值。

五、本课小结与作业:

小结:二次根式的乘法法则

作业:

1)。课课练P9-10

2)。补充习题

二次根式教案篇4

一、素质教育目标

(一)知识教学点

1.使学生了解最简二次根式的概念和同类二次根式的概念.

2.能判断二次根式中的同类二次根式.

3.会用同类二次根式进行二次根式的加减.

(二)能力训练点

通过本节的学习,培养学生的思维能力并提高学生的运算能力.

(三)德育渗透点

从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.

(四)美育渗透点

通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

二、学法引导

1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的"计算方法.

2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

三、重点·难点·疑点及解决办法

1.教学重点二次根式的加减法运算.

2.教学难点二次根式的化简.

3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

四、课时安排

2课时

五、教具学具准备

投影片

六、师生互动活动设计

1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.

七、教学步骤

(一)明确目标

学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

(二)整体感知

同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

二次根式教案篇5

一、内容和内容解析

1.内容

二次根式的概念。

2.内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1、教学目标

(1)体会研究二次根式是实际的需要.

(2)了解二次根式的概念.

2、 教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计

1.创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

【设计意图】为概括二次根式的概念作铺垫.

2.抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

3.辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问.

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

4.综合运用,巩固提高

练习1 完成教科书第3页的练习。

练习2 当x 是什么实数时,下列各式有意义。

(1) ;(2) ;(3) ;(4) 。

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

5.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结。

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

6.布置作业:

教科书习题16.1第1,3,5, 7,10题.

五、目标检测设计

1、 下列各式中,一定是二次根式的是( )

A. B. C. D.

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

2、 当 时,二次根式 无意义.

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

3、当 时,二次根式 有最小值,其最小值是 .

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

二次根式教案篇6

教法:

1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的`作用,对实现教学目标起了重要的作用;

2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:

1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

知识点

上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第3页——4页内容,完成下列任务:

1、请比较与0的大小,你得到的结论是:________________________。

2、完成3页“探究”中的填空,你得到的结论是____________________。

3、看例2是怎样利用性质进行计算的。

4、完成4页“探究”中的填空,你得到的结论是:____________________。

5 、看懂例3,有困难可与同伴交流或问老师。

课时作业

教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

推荐访问:根式 教案 二次根式教案详案